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SUMMARY

In this paper, we present numerical approximations of optimal control of unsteady �ow problems using
sequential quadratic programming method (SQP) and time domain decomposition. The SQP method is
considered superior due to its fast convergence and its ability to take advantage of existing numerical
techniques for �uid �ow problems. It iteratively solves a sequence of linear quadratic optimal control
problems converging to the solution of the non-linear optimal control problem. The solution to the linear
quadratic problem is characterized by the Karush–Kuhn–Tucker (KKT) optimality system which in the
present context is a formidable system to solve. As a remedy various time domain decompositions,
inexact SQP implementations and block iterative methods to solve the KKT systems are examined.
Numerical results are presented showing the e�ciency and feasibility of the algorithms. Copyright ?
2004 John Wiley & Sons, Ltd.

KEY WORDS: optimal control; time domain decomposition; iterative methods; inexact SQP;
�owcontrol

1. INTRODUCTION

Optimal control of unsteady �ows is critical to the design and performance of �uid dy-
namical systems. The invention of micro electro mechanical systems (MEMS) and other
micro-devices has generated considerable interest in active control of �uid dynamical sys-
tems. The application of MEMS technology to control the boundary layer over aerodynamic
surfaces has the potential of accomplishing high maneuverability of aircraft with larger �ight
envelope. Synthetic jets and suction=injection devices distributed over the wings of the air-
craft can be used to modify the �ow �eld in the boundary layer and prevent separation
and transition to turbulence, and thus can modify the lift and drag characteristics of the
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22 S. S. RAVINDRAN

aerodynamic surfaces. These e�ects could result in reduced fuel consumption and increased
range.
The past two decades have seen signi�cant progress in control of computational �uid dy-

namics; see References [1–6 and 29] and the references therein. Experimental results using
micro actuators and sensors have also demonstrated the potential of control of �uids to in-
crease the performance of high-lift wings, cavity noise and other �ow systems [7, 8]. Despite
this progress, numerical computation of optimal control for unsteady �ows remains a chal-
lenging problem. Optimal control of �uid �ow is a non-linear optimization problem that is
constrained by the Navier–Stokes equations that govern the underlying �uid �ow. Therefore
solving the optimal control problem can be orders of magnitude more costlier computationally
than solving the Navier–Stokes equations.
Numerical methods for solving optimal control problems can be divided into two classes de-

pending on whether the state variables are considered as an independent variables or function
of control variables. In the former case the Navier–Stokes equation is an explicit constraint
in the non-linear optimization (e.g. References [3, 4, 9, 10]) whereas in the latter the Navier–
Stokes equations merely act to describe the state as a function of control and therefore the
resulting problem is that of unconstrained minimization (e.g. References [11, 12]). The latter
can be very ine�cient as the simulation problem has to be solved at each optimization iter-
ation. In the former case, however, one can design sequential quadratic programming (SQP)
algorithms that simultaneously converge to the state and control variables.
The SQP methods are second order and considered superior for non-linear optimal con-

trol problems; see for e.g. References [13, 14] for the �nite dimensional case and Refer-
ences [3, 4, 9, 10, 15] for the in�nite dimensional case. The SQP methods solve non-linear
optimal control problem by a sequence of linear quadratic subproblems. In other words the
SQP method requires satisfaction of only a linear approximation of the state constraint avoid-
ing the need to converge fully. Thus, the state equations are satis�ed as the control values
converge to their optimal values. Its application to solve optimal control of steady Navier–
Stokes �ow has been demonstrated in References [3, 4, 10, 16, 17] and [9]. The numerical
resolution of the optimal control of unsteady �ow problem requires solving the Navier–Stokes
equations with an initial condition and the adjoint equations with a �nal condition. This ab-
normal coupling makes the unsteady �ow control problems challenging in terms of both the
storage and computer time required to carry out the simulations.
In this article, we present numerical approximations of optimal control of unsteady �ows

using SQP method and time domain decomposition. The linear quadratic subproblem that
arises during the SQP iteration is solved by solving the corresponding �rst order necessary
condition of optimality known as the Karush–Kuhn–Tucker (KKT) condition. E�cient solu-
tion of KKT system of partial di�erential equations is one of the important factors a�ecting
the robustness of the SQP algorithm. We will investigate several time-domain decomposition
approaches and inexact SQP implementation in this article. We present numerical implemen-
tation and results for two unsteady control problems, a channel �ow and a cavity �ow, when
the control is velocity (suction=blowing) on part of the boundary.
The article is organized as follows. In Section 2 we state the optimal control problem. The

SQP methods for solving the optimal control problems associated with the unsteady Navier–
Stokes equations are presented in Section 3. Time decomposition approaches for e�cient
implementation of the SQP methods are discussed in Section 4. Section 5 reports numerical
experiments of the methods and approaches, followed by conclusion in Section 6.
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2. OPTIMAL CONTROL PROBLEMS

In optimal control problems, the objective of interest is represented as a cost functional to be
minimized. In the test problems to be discussed in this article, the control g is to be applied
to either track a desired �ow �eld or to reduce the size of wake spread in the �ow domain
over the time horizon [0; T ] using the least amount of control e�ort possible. A relevant cost
functional for such a task can be written in a generic form as

T(u; g)=
∫ T

0
F(u) dt +

�
2

∫ T

0

∫
�c
|g|2 dx dt

The �rst term in the above cost functional is exactly that quantity we would like to minimize
and the second term is a measure of the magnitude of the control which is included in the
cost functional to limit the size of the control. The parameter � is a positive constant that
adjust the relative weight of the two terms in the functional.
The optimal control problem is to �nd the control g that minimizes the cost functional

T subject to the constraint that the �uid obeys the equations of motion and conservation of
mass, namely, the Navier–Stokes equations

u t − 1
Re
∇2u+ u · ∇u+∇p= 0 in �× (0; T ]

∇ · u=0 in �× (0; T ]

u=0 on �u × [0; T ]; u= g on �c× [0; T ]

and u(x; 0)= u0(x) in �

(1)

where � is the �ow domain with boundary �=�u ∪ �c. Moreover the velocity u, the pres-
sure p, the time t and the spatial variable x are in non-dimensional form. The Reynolds’
number Re is de�ned as Re=�uaveL=�, where � is the density, uave is the average in-
�ow velocity, L is the characteristic length and � is the kinematic viscosity. The �ow is
controlled through suction and blowing on the boundary which takes the form u= g on
�c× [0; T ].
For spatial discretization, we will use a mixed �nite-element method. For this we need

a weak form of the Navier–Stokes equation (1). A weak formulation is given by: �nd
u∈L2(0; T ;H1(�)), u|�u = 0 and p∈L2(�) that satis�es

(u t + u · ∇u;w) + 1
Re
(∇u;∇w)− (p;∇ ·w) + 1

�
(u − g;w)�c = 0 ∀w∈V

(∇ · u; q)=0 ∀q∈L2(�)

u(x; 0)= u0(x) for x∈�

(2)
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where V= {w|w∈H1(�); w|�u = 0}. In the above weak-form, we employed a penalty method
and reformulated our boundary condition for control as −pn + (1=Re)(@u=@n) + u=�= g=� on
�c× [0; T ] which reduces to the original form as �→ 0; see [3, 4].
The optimal control problems we consider can be described in a general manner as

follows:

seek the boundary velocity control g and state pair (u; p) such

that the cost functional T( · ; · ) is minimized subject to the constraint

that the �ow �eld satisfy the Navier–Stokes equations (2) over [0; T ]:

(P)

3. SQP METHOD FOR UNSTEADY OPTIMAL CONTROL

The SQP method solves a quadratic subproblem at each iteration. Each subproblem minimizes
a quadratic model of a modi�ed Lagrangian subject to linearized constraints. A globalization
strategy is used to guarantee convergence from initial guess. The SQP method does not satisfy
the non-linear constraints at each iteration except as the optimal solution is approached. We
will in the sequel denote the state variables by v, the adjoint variables by [, the current iterate
by (vc; [c)= (uc; pc; gc; \c; �c), the new iterate by (v+; [+)= (u+; p+; g+; \+; �+). Moreover, the
Lagrangian L of the optimal control problem is given by

L=T(u; g)− (u t + u · ∇u; \)− 1
Re
(∇u;∇\) + (p;∇ · \)− 1

�
(u − g; \)�c − (∇ · u; �)

and its �rst and second derivatives, respectively, are given by

Lv(vc; [c)[�v]; Lv;v(vc; [c)[�v;�v]

where �v= v− vc is the search direction. In the SQP method the new iterate is computed as
the solution of the following quadratic subproblem (QP):

Minimize{∇vT(vc)[�v] + 1
2Lvv(vc; [c)[�v;�v]}

subject to the linearized state equations

(u t + uc · ∇u+ u · ∇uc;w) + 1
Re
(∇u;∇w)− (p;∇ ·w) + 1

�
(u − g;w)�c

= (uc · ∇uc;w) ∀w∈V (3)

(∇ · u; q) = 0 ∀q∈L2(�)

u(x; 0) = u0(x) for x∈�
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The statement of the SQP method is given in Algorithm 1.

Algorithm 1 [SQP]
Given (v(0); [(0)) su�ciently close to the solution (v∗; [∗) and set k=0
Step 1. Form and solve the quadratic subproblem (QP) to determine

�(k)
v and let [(k+1) be the corresponding optimal Lagrange multipliers.

Step 2. Set v(k+1) = v(k) + �(k)
v .

Step 3. Stop if converged.
Step 4. Set k→ k + 1, go to Step 1.

The execution of Step 2, that is a solution to the linear quadratic subproblem (QP) is
obtained by solving the following �rst order necessary conditions of optimality:

Ls
v =0; Ls

[=0; Ls
g=0

where Ls is the Lagrangian corresponding to the linear quadratic subproblem. Thus, given the
current iterate (vc; [c), one obtains the new iterate (v+; [+) by solving the system of linearized
state equations (3) and

−(\ t ;w) + 1
Re
(∇\;∇w) + (uc · ∇w; \− \c) + (w · ∇uc; \− \c)− (�;∇ ·w) + (u · ∇w; \c)

+ (w · ∇u; \c) + 1
�
(\;w)�c = (Fu(uc);w) + (Fuu(uc)(u − uc);w) ∀w∈V

(∇ · \; q)=0 ∀q∈L2(�)

�(g; z)� +
1
�
(\; z)�c = 0 ∀z∈L2(�c)

\=0 on �u × [0; T ]

\(x; T )=0 in �

The SQP method described above is only locally convergent and its ultimate success depends
on how fast the outer iterations converge. Its global convergence is guaranteed only if the
Jacobian of the constraints is nonsingular for all the iterates of the optimization variables. But
this is too strong a requirement for highly non-linear systems like the Navier–Stokes equations.
Commonly used globalization methods include line search and trust region algorithms [18].
The trust region method in the context of SQP methods is discussed in Reference [19]. The
line search methods require choosing a good merit function that allows unit step length close
to a solution so that the quadratic convergence of the SQP method can be observed. Popular
choices for merit function are l1 merit function with second order corrections and augmented
Lagrangian. Another alternative for globalization in the context of optimal control of �uid �ow
systems is to use continuation on a parameter that scales the non-linearity. Such parameters
are common in �uid �ow systems: Reynolds number in incompressible �ows, Mach number
in compressible �ows and Hartman number in MHD. Continuation generates good initial
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guesses and globalizes quite naturally when the optimal solutions are away from the limit and
bifurcations points.
In our computations, we use a continuation method on the Reynolds number as globalization

strategy. It proceeds as follows: Set �=1 in the SQP algorithm. Let Red the desired Reynolds
number at which we want to solve the optimal control problem. We start with Re=Re0
and de�ne a sequence of optimal control problems by increasing the Reynolds number with
increment �Re. For the subsequent optimization problems we choose su�ciently small �Re
such that solution obtained by solving the ith sequence in the optimization problem with
Reynolds number de�ned by Re0 + i�Re can be used as initial iterate for the (i + 1)st
problem to achieve convergence. The statement of the resulting globalized algorithm is given
in Algorithm 2.

Algorithm 2 [Globalized SQP]
Choose (v(0); [(0)); kmax; set k=0; Re=Re0
Step 1. Form and solve the quadratic subproblem (QP) to determine

�(k)
v and let [(k+1) be the corresponding optimal Lagrange multipliers.

Step 2. Set v(k+1) = v(k) + �(k)
v .

Step 3. If converged, stop and go to Step 6.
Step 4. If k= km reduce Re and go to Step 1.
Step 5. Set k ← k + 1, go to Step 1.
Step 6. If Re=Red stop else set Re=Re+�Re and go to Step 1.

The algorithm uses two level iterations. The outer iteration involves incrementing the con-
tinuation parameter until the desired parameter is reached. The inner iteration involves solving
the optimality system of the linear quadratic subproblem for a �xed continuation parameter.
Due to the large-scale nature of the unsteady �ow control problems, the inner iterations can-
not be solved by direct methods. In the next section we will look at some time domain
decomposition approaches to deal with this issue.

4. TIME DOMAIN DECOMPOSITION TECHNIQUES

The �rst approach is an iterative method to e�ciently solve the optimality system of the
linear quadratic subproblem arising in the SQP method. An iterative method similar to the
one discussed here has been presented in Reference [20] to solve linear quadratic optimal
control problems. The second approach uses a receding horizon idea and replaces the optimal
control problem on the full time horizon by a sequence of optimal control problems on
short control horizons. The time discretization of the Navier–Stokes equations is carried out
using the fully implicit backward Euler method and the spatial discretization uses a mixed
�nite-element method. Let Kh be a standard �nite element triangulation of �, where h is the
maximal length of all the triangulation edges in Kh. Let Pk to be the space of all polynomials
of degree less than or equal to k and

Vh= {vh | vh ∈C0( ��)× C0( ��); vh | K ∈P2 ×P2 ∀K ∈Kh}
Ph= {qh | qh ∈C0( ��); qh | K ∈P1 ∀K ∈Kh}
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4.1. Technique I

The time interval [0; T ] is partitioned with a uniform subdivision with step-size �t=T=N as

0= t0¡t1 · · ·¡tN =T (P1)

Let un denote the approximation of x → u(x; n�t), and similarly pn; gn. Approximating the
time integral in the cost functional by the right-endpoint rule we get the following fully
discrete optimal control problem:

Minimize Th(unh; g
n
h)=�t

N∑
n=1

F(unh) +
��t
2

N∑
n=1

∫
�c
|gnh|2 dx

subject to

(
unh − un−1h

�t
+ unh · ∇unh;w

)
+
1
Re
(∇unh;∇w)− (pnh;∇ · w)

+
1
�
(unh − gnh;w)�c = 0 ∀w∈Vh

(∇ · unh; q)=0 ∀q∈Ph




for n=1; : : : ; N (4)

Application of Algorithm 2 to the optimal control problem (4) requires computing the solu-
tions of the optimality system for the associated quadratic subproblem. This system can be
rearranged to have a block-structure if we eliminate the control variable g and reorder the
other variables as

(u1h; p
1
h; \1h; �1h| : : : ; |uNh ; pNh ; \Nh ; �Nh )T

Thus, given the current iterate (u1; ch ; p
1; c
h ; \

1; c
h ; �

1; c
h |; : : : ; |uN; ch ; pN; ch ; \N; ch ; �N; ch )T, one obtains the

new iterate (u1;+h ; p
1;+
h ; \

1;+
h ; �

1;+
h |; : : : ; |uN;+h ; pN;+h ; \N;+h ; �N;+h )T, by solving the discrete the opti-

mality system: for n=1; : : : ; N

u0h= uh0; \N+1h =0(
unh − un−1h

�t
;w

)
+
1
Re
(∇unh;∇w) + (un; ch · ∇unh;w) + (unh · ∇un; ch ;w)− (pnh;∇ · w)

+
1
�
(unh +

1
�t��

\nh;w)�c = (u
n; c
h · ∇un; ch ;w) ∀w∈Vh
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(∇ · unh; q)=0 ∀q∈Ph
(
\nh − \n+1h

�t
;w
)
+
1
Re
(∇\nh;∇w) + (un; ch · ∇w; \n; ch − \n; ch ) + (w · ∇un; ch ; \nh − \n; ch )

−(�nh;∇ · w) + (unh · ∇w; \n; ch ) + (w · ∇unh; \n; ch ) +
1
�
(\nh;w)�c

=�t(Funh(u
n; c
h );w) +�t(Funhu

n
h
(un; ch )(u

n
h − un; ch );w) ∀w∈Vh

(∇ · \nh; q)=0 ∀q∈Ph

Some comments on the structure of the discrete optimality system are in order. This is a
formidable system of (dNv + Np)N linear equations with (dNv + Np)N unknowns, where Nv
denotes the number of velocity unknowns, Np denotes the number of pressure unknowns and
d denotes the space dimension. In matrix form, the resulting linear algebraic system AX= b
can be written as




A11 A12 0 · · · · · · · · · 0

A21 A22 A23
. . .

...

0 A32 A33 A34
. . .

...

...
. . . A43 A44

. . . . . .
...

...
. . . . . . . . . . . . 0

...
. . . AN−1N−2 AN−1N−1 AN−1N

0 · · · · · · · · · 0 ANN−1 ANN







X1

X2

X3

X4

...

...

XN−1

XN







b1

b2

b3

b4

...

...

bN−1

bN




(OSQP1)

where

(X1;X2; : : : ;XN )T = (U1; P1; M 1; S1|U2; P2; M 2; S2| · · ·|UN ; PN ;MN ; SN )T

and U; P;M; S denote the nodal values of u; p; \; � in the space-time grid, respectively. The
success of Algorithm 2 depends on e�cient and fast computation of this linear system of
equations. Our approach to solve this formidable linear system is to exploit its block struc-
ture and design a Gauss–Seidel iterative method and its variants. An outline of the SQP
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Block–Gauss–Seidel algorithm is given by the following:

Algorithm 3:[SQP Block-Gauss-Seidel]
Choose X(0); kmax; set k=0; Re=Re0.

Step 1. Form the optimality system (OSQP1) of the quadratic subproblem.
Step 2: Solve (OSQP1) by the block-Gauss–Seidel method:
Step 2(a). Set m=1; X [0]i =X(k)i ; i=1; 2; : : : ; N .
Step 2(b). Form and solve

AiiX
[m]
i = bi − Aii−1X [m]i−1 − Aii+1X [m−1]i+1 ; i=1; 2; : : : ; N

by a linear algebraic solver.
Step 2(c). If converged, set X∗=X[m] and go to Step 3.
Step 2(d). Set m← m+ 1 and go to Step 2(b).

Step 3. Set X(k+1) =X∗.
Step 4(a). Stop if converged and go to Step 6.
Step 4(b). If k= kmax reduce Re and go to Step 1.
Step 5. Set k ← k + 1 and go to Step 1.
Step 6. If Re=Red stop else set Re=Re+�Re and go to Step 1.

In our implementation of Algorithm 3, we use a banded Gaussian elimination with partial
pivoting in Step 2(b) but of course one can instead use an iterative linear solver. Step 2 of
this algorithm can instead be carried out using a block Jacobi type iteration or successive
over-relaxation (SOR) type iteration. In a Jacobi iteration one replaces Step 2(b) with

AiiX
[m]
i = bi − Aii−1X [m−1]i−1 − Aii+1X [m−1]i+1 ; i=1; 2; : : : ; N

and in SOR iteration one replaces Step 2(b) with

X∗=!X[m] + (1−!)X[m−1]

where 0¡!¡2 is a �xed relaxation parameter. One known drawback of these iterative meth-
ods is their slow convergence. However, our numerical implementation reported in Section 5
indicate that they can still be e�cient if used in the context of inexact SQP methods. The idea
behind the inexact SQP methods is to terminate the iterative linear solver such as Gauss-Seidel
or Jacobi before convergence and approximately compute the SQP step.

4.2. Technique II

In the receding horizon control strategies, the optimal control problem (P) is decomposed into
sequence of same type of optimal control problems posed on shorter time interval. The time
interval [0; T ] is �rst partitioned into

0= t∗0¡t
∗
1¡ · · ·¡t∗N =T (P2)

and the short time interval optimal control problems are de�ned by restricting the original
control problem to the time intervals {t∗i−1; t∗i ]. These control problems can then be solved
sequentially. To compute the optimal control ĝi in the ith short time interval, we assume
the optimal control ĝi−1 and the corresponding states (û i−1; p̂i−1) have been computed. We
compute the optimal control ĝi by applying the SQP numerical optimization technique to the
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30 S. S. RAVINDRAN

optimal control problem de�ned on the interval [t∗i−1; t
∗
i ]. The control (suboptimal) ĝ for the

original optimal control problem (P) over [0; T ] is de�ned by patching together the piecewise
optimal controls ĝi; i=1; : : : ; N . There are two ways to select the partitioning P2 of the
control horizon [0; T ]. One way is to select the partition (P2) such that it coincides with
the partition (P1) used for time integration. This particular selection is called ‘instantaneous
control techniques’; see Reference [21–23]. The other way is to select the partition (P2) such
that �t∗= t∗i − t∗i−1¿�t= ti − ti−1. This selection therefore does not require that the step-size
�t∗ be su�ciently small unlike in the instantaneous control case where the step-size �t=�t∗

has to be su�ciently small.
The optimal control problem on the short horizon [t∗i−1; t

∗
i ] is de�ned as: �nd a solution

(û ip̂i; ĝi) on the interval [t∗i−1; t
∗
i ] which minimizes the functional

T(t∗i−1 ;t
∗
i )(u; g)=

∫ t∗i

t∗i−1

F(u) dt +
�
2

∫ t∗i

t∗i−1

∫
�c
|g|2 dx dt

subject to

(ut ;w) +
1
Re
(∇u;∇w) + (u · ∇u;w)− (p;∇w)

+
1
�
(u − g;w)�c = 0 ∀w∈V; ∀t ∈ (t∗i−1; t∗i ]

(∇ · u; q)=0 ∀q∈L2(�); ∀t ∈ (t∗i−1; t∗i ]

u(x; ti−1)= û(i−1) in � (5)

To solve the optimal control problem (5) for each n, we use the so-called discretize-then-
optimize approach. The time integral in the cost functional T(t∗i−1 ;t

∗
i ) is discretized using the

right-endpoint rectangle rule with step-size �t= ti− ti−1 =�t∗=2 and the Navier–Stokes equa-
tions is discretized in time using the backward Euler method with the same step-size �t.
The SQP iterates are computed by solving the optimality system for the associated quadratic
subproblem. Spatial discretization of this system is by the �nite elements as described in the
previous section. The resulting �nite dimensional system AX= b can be written as[

Ai11 Ai12

Ai21 Ai22

][
Xi1

Xi2

]
=

[
bi1

bi2

]
(OSQP2)

where

(Xi1;X
i
2)
T = (U1; P1; M 1; S1;U2; P2; M 2; S2)T

and U; P;M; S denote the nodal values of u; p; \; �, respectively. The above linear system
is solved by employing a banded Gaussian elimination with pivoting but of course one can
instead use an iterative linear solver. A better, although not ideal approach, may be to use
block Gauss–Seidal method. An outline of the SQP-Receding-Horizon algorithm is given by
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the following:

Algorithm 4: [SQP-Receding-Horizon]
Given the optimal control ĝ0 and the corresponding states (û0; p̂0) and set i=0.
Step 1. Form the optimality system (OSQP2) of the quadratic subproblem.
Step 2. Solve (OSQP2) by a linear algebraic solver for (Xi1;X

i
2)
T.

Step 3. Stop if i�t∗=T .
Step 4. Set i← i + 1 and go to Step 1.

In order to derive the SQP instantaneous control algorithm one �rst replaces (OSQP2) with

AiXi= bi (OSQP3)

where Xi=(U1; P1; M 1; S1)T and U; P;M; S denote the nodal values of u; p; \; �, respectively.
Then in Step 2 above we solve (OSQP3) for Xi.

5. NUMERICAL COMPUTING AND RESULTS

In this section we will present the results of numerical experiments with the techniques de-
scribed in the previous section. All the simulations presented in this study are performed
with �nite element discretization in space and �nite di�erence in time for the Navier–Stokes
equations in primitive variable form. The �nite element grid for the �ow domain uses trian-
gles and a triangular grid is generated as follows. The domain is �rst divided into squares
and then each square is subdivided into two triangles by cutting from bottom right to top
left. The shape functions for the velocity v and adjoint velocity \ are piecewise quadratic
polynomials, and that for the pressure p and adjoint pressure � are piecewise linear poly-
nomials. All four variables are de�ned on the same triangle and the degrees of freedom for
the quadratic elements are the function values at the vertices and midpoints of each edge; the
degrees of freedom for linear elements are the function values at the vertices. This choice
of �nite element spaces have been widely used in simulation (e.g. References [24, 25]) and
control [3, 4, 10] of incompressible �ow, and compiles the div-stability conditions needed to
avoid spurious oscillations.

5.1. Test I

In this test we consider the problem of tracking an unsteady velocity �eld in a square cavity
by controlling the boundary injection=suction of the �uid. This re�ects the desire to steer, over
time, a candidate velocity �eld u to a given target velocity �eld ud by appropriately controlling
the velocity along the boundary of the �ow domain. Speci�cally, the control problem solved
is as follows: Minimize the cost functional

T(u; g)=
�
2

∫ T

0

∫
�
|u − ud|2 dx dt + �

2

∫ T

0

∫
�c
|g|2 dx dt

subject to the constraints (2).
Here we will compare the three algorithms that we proposed: SQP–Gauss–Seidel, SQP–

Receding–Horizon and SQP–Instantaneous. In all cases, at t=0 the �uid inside the cavity is
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at rest and the control is applied on the boundary to drive the �ow �eld to the target unsteady
velocity �eld

ud(x; t)=

(
sin(2�y + �t)(cos(2�x)− 1)
2 sin(2�x) sin(�y + �t) sin(�y)

)

The �ow domain is taken to be a unit square and the computational grid is non-uniform in
both spatial directions. The time domain is [0; 0:5] with the time step size of �t= 1

40 and
the parameters �; � and � are �=10−4; �=103 and �=1, respectively. The control g is a
four-sided control and that covers the whole boundary �=�c. In Figures 1 and 2 we present
the results from the SQP–Gauss–Seidel algorithm implementations. It shows the evolution
of the controlled and target �ow �eld. The controlled �ow is presented in the �rst column
on the left, the target �ow is presented in the second column on the right and all the �gures
are normalized. As seen in the �gures, at t=0:25 the controlled �ow reaches the optimal
�ow and follows the motion of the target velocity �eld. In Figure 3 we present the evolution
of the cost functional (‖u − ud‖) using both technique I (block Gauss–Seidel) and technique
II (receding Horizon and instantaneous). As seen in the graphs, the rate of decrease of the
functional is independent of the step-size. This seem to con�rm the theoretical results proved
in Reference [26]. It also shows that the optimal control from the SQP–Gauss–Seidel algorithm
equi-distributes the reduction over the time whereas the other two try to match the desired
state at every instant of time. In Table I we present results obtained by using the three
di�erent algorithms; speci�cally we give the values of the cost functional at the �nal time.
For means of comparison of the speed of the algorithms we give the CPU time generated by
performing the computations for Reynolds number Re=20 on a SUN Ultra60 machine with
a 19× 19 spatial grid and no continuation. All the implementations used the same grid and
linear algebraic solver. The CPU timing listed in the table indicates that the instantaneous
approach is the fastest albeit suboptimal. However, the speed of approach I can be improved
by implementing an e�cient iterative method for the linear solver.
Our computational experiments reported in Table I indicate that among these algorithms

the SQP–Gauss–Seidel algorithm being the only genuinely optimal control algorithm gives
the best reduction in the cost functional. In Figure 4, the evolution of the cost functional as
a function of time during the SQP outer iterations are documented with Gauss–Seidel inner
iterations �xed at 5. It can be gleaned from the graphs that there is no signi�cant change
after the third outer iteration.
Let us turn our discussion to implementing an inexact SQP method that avoids fully con-

verging to the KKT system during inner iterations. We want to stop the Gauss–Seidel or
Jacobi inner iterations prematurely and study its e�ect on the convergence of SQP iterations
with technique I. We do this by presetting the maximum number of Gauss–Seidel or Jacobi
iterations to a small �xed number and use the resulting approximate solution in the SQP iter-
ations. In Figures 5 and 6 we present results of this case study for Re=20 and for a 10× 10
grid with no continuation. These results indicate that only few Gauss–Seidel iterations are
enough to get the SQP outer iterations to converge and doing so results in minimum total
computational time. It also indicates that as we increase the total number of allowed Gauss–
Seidel iterations, the total number of SQP iterations decreases and eventually stays at about 6.
The optimal number of iterations required for the Gauss–Seidel and Jacobi inner iterations
to achieve minimum CPU time is 1 and 3, respectively; see Figures 5 and 6. This suggests
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Figure 1. Controlled (�rst column) and target (second column) �ows at t=0:025 (�rst row), t=0:125
(second row) and t=0:25 (third row).
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Figure 2. Controlled (�rst column) and target (second column) �ows at t=0:375
(�rst row) and t=0:5 (second row).

implementing the inexact SQP method that avoids fully converging to the KKT system during
the inner iterations is indeed e�ective.
Table II gives statistics for the high Reynolds number case using the continuation technique.

Continuation was used at every Reynolds number listed in the �rst column starting at Re=100.
For example, the solutions with Reynolds number of 50 was used as the initial guess for the
optimal control computation with Reynolds number of 100. We report the number of SQP
iterations taken to fully converge in the inexact setting by prematurely stopping the Gauss–
Seidel iterations; see the last row in Table II. The CPU time listed are in hours and shows
again that the inexact SQP implementation reduces the computational time.
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Figure 3. Evolution of cost functional with time t.

Table I. Comparison of optimal control approaches for Test I.

Receding Horizon Instantaneous Block Gauss–Seidal

CPU Time 4:11 h 9 min 45 min
‖u − ud‖ at time T 0.358 0.369 0.29

Figure 4. Evolution of cost functional during SQP iterations of approach I.

5.2. Test II

In this test case we consider the problem of reducing the �ow separation and wake spread in
channel �ows using boundary control. Reducing the separation and wake spread in �ow do-
main is of interest in �ow past blu� bodies. The �ow con�guration considered is a backward-
facing step channel shown in Figure 7. In the schematic of the geometry, the downstream
channel is de�ned to have unit height L with step height and inlet height L=2, and step length
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Figure 5. SQP iterations and CPU time as a function of Gauss–Seidel iterations.

Figure 6. SQP iterations and CPU times as a function of Jacobi iterations.

Table II. Performance of Inexact implementation of the SQP method that avoids fully
converging to the KKT system during inner iterations.

Re sqp iter sqp iter sqp iter sqp iter sqp iter sqp iter sqp iter

50 30 15 12 8 7 6 5
100 25 13 9 7 7 5 6
150 23 12 9 7 6 5 5
200 23 12 8 7 6 5 5
250 22 11 8 7 6 5 4
300 21 10 7 6 5 5 4
350 19 10 7 6 5 4 4
400 19 10 7 6 5 4 4
Total CPU 7.09 7.13 7.25 7.26 7.42 7.27 7.34
GS iter 1 2 3 4 5 6 7

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:21–42



NUMERICAL APPROXIMATION OF OPTIMAL CONTROL OF UNSTEADY FLOWS 37

Figure 7. Computational domain for the backward-facing-step channel problem.

Figure 8. Computed control g for three di�erent cost functionals as a function of
y for slot 2 at time t=10.

Figure 9. Baseline velocity �eld behind the step of the channel ((x; y)∈ (L=4; 3)× (0; L)).

L=4. The downstream channel length was taken as x=8L. At t=0, �uid is injected into the
channel through the opening on the left. At the enlargement, the �ow velocity is suddenly
reduced and as a consequence the pressure is increased (see Figure 8). This causes the �uid
particles near the lower wall to separate and form a recirculation bubble, just downstream
of the sudden enlargement; see Figure 9. The length of the recirculation region is a func-
tion of the channel width ratio and Reynolds number. The objective of the optimal control
is to reduce the size of the recirculation and hence the length of re-attachment for a �xed
Reynolds number and channel width ratio. The control is e�ected by wall normal velocity
(suction=blowing) on a small slot in the vertical part of the step; see Figure 7.
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The choice of cost functional to be minimized to achieve our objective is not trivial. Since
our goal is to reduce the recirculation region in the �ow, a straight forward choice is to regulate
the square of the vorticity (the enstrophy). Alternatively, one can minimize the H 1-norm of the
velocity �eld. Other less direct choices are the minimization of the viscous dissipation or the
drag on the surface and the minimization of the kinetic energy. We therefore consider four
di�erent cost functionals namely the cost functional for the enstrophy regulation

TEns(u; g)=
1
2

∫ T

0

∫
�
	|∇× u|2 dx dt + �

2

∫ T

0

∫
�c
|g|2 dx dt

the cost functional for the kinetic energy

TKE(u; g)=
1
2

∫ T

0

∫
�
	|u|2 dx dt + �

2

∫ T

0

∫
�c
|g|2 dx dt

the cost functional for the dissipation which for incompressible �ow is equivalent to the drag
on the surface

TDra(u; g)=
1
2

∫ T

0

∫
�
	|∇u+∇uT|2 dx dt + �

2

∫ T

0

∫
�c
|g|2 dx dt

and the cost function for the kinetic energy in H 1-norm

THIKE(u; g)=
1
2

∫ T

0

∫
�
	{|u|2 + |∇u|2} dx dt + �

2

∫ T

0

∫
�c
|g|2 dx dt

with 	(x; y) being a weight function to reduce the physical quantity of interest in the corner
region �∗=(L=4; 2)× (0; L=2) of the channel � and de�ned to be

	(x)=

{
10 if x∈�∗

0 if x∈�\�∗

The only non-dimensional parameter of interest, the Reynolds’ number is de�ned by Re=
�uaveL=�. At the in�ow boundary a parabolic velocity pro�le is prescribed, i.e. u(x=0; L=26
y6L)=24(y−L=2)(L−y); v(x=0; L=26y6L)=0, which produces a maximum in�ow ve-
locity of umax = 3

2 and an average velocity of uave = 1. On the solid walls the no-slip condition
(u=0) is imposed. At the out�ow, we apply the pseudo stress-free condition [27]

−p+ 1
Re
@u
@x
=0 and

@v
@x
=0

The numerical simulations for this test were performed for the Reynolds number of 200;
� =10−4; �=1:0 and for the control horizon of [0; 10]. The computational grid was uniform
in both horizontal and vertical directions with �ner grid behind the step where separation
bubble forms. We report only the �nal results with 79× 79 grid and a time step size of
�t= 1

50 but calculations with varying mesh sizes have been performed. We implemented
the SQP instantaneous algorithm with the continuation technique that uses �Re=50 as the
Reynolds number increment.
The optimal location of actuator, where control is applied, is crucial for the e�ectiveness

of control. We address this problem by the following simple approach. We �rst choose to
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place the actuator on the vertical part of the step. This choice is motivated by the fact that if
one wants maximum in�uence in the �ow, then the control has to be applied in that vicinity.
Then we �nd where exactly on this part of the channel the actuator has to be placed. To
this end we divide this portion of the step �s into four parts of equal size and name them
as Slot 1 (�1s : 06y6L=8), Slot 2 (�

2
s : L=86y6L=4), Slot 3 (�

3
s : L=46y63L=8) and Slot 4

(�4s : 3L=86y6L=2) with �s =
⋃4
i=1 �

i
s . We de�ne the control on these slots as follows

Slot 1: u(L=4; y)=

{
(g; 0) if y∈�1s
(0; 0) if y∈�s\�1s

Slot 2: u(L=4; y)=

{
(g; 0) if y∈�2s
(0; 0) if y∈�s\�2s

Slot 3: u(L=4; y)=

{
(g; 0) if y∈�3s
(0; 0) if y∈�s\�3s

Slot 4: u(L=4; y)=

{
(g; 0) if y∈�4s
(0; 0) if y∈�s\�4s

In order to determine the best location for the actuator, we compute the control for each of
these cases and compare the results. The optimal control formulation for this test was based on
the enstrophy cost functional TEns. Computed controls g at various actuator positions indicated
that it is blowing on Slot 2 and Slot 3 and suction on Slot 4. The resulting velocity �elds
with the optimal control action is given in Figure 10. As shown in Figure 10(a) when the
control is on Slot 1 the �ow separates both at the corner of the step and at the bottom wall
further downstream. Although the separation at the corner of the step causes a marginal e�ect,
the separation on the bottom wall causes a substantial separation bubble. The control action
on Slot 2 provides the best performance with almost complete suppression of the separation
bubble. As indicated by the �ow �elds in Figure 10(b) the wake spread has been e�ectively
eliminated by the optimal control (blowing) and the re-attachment length has been reduced
by more than 99% compared to the uncontrolled case. When the control is on Slot 3, the
separation at the corner is eliminated but it separates below Slot 3 with the associated bubble
albeit small is seen in Figure 10(c). The control action on Slot 4 e�ectively eliminates the
�ow separation at the corner of the step but it makes the �ow to separate from the top wall
and form a substantial separation bubble on the top wall as shown in Figure 10(d). Therefore
the best location for control is on Slot 2 and the optimal control is blowing. These �ndings are
in agreement with our earlier �ndings reported in Reference [28] using reduced-order control
design.
The choice of the cost functional to be minimized is crucial to achieve the control objective.

Figure 11 show the performance of the optimal controls based on minimization of TEns;TKE

and TDra, respectively, and when the actuator is on Slot 2. Shown in the �gure are u-velocity
at various stations downstream of the channel. As seen in the �gure, the optimal control
based on the TEns formulation performs the best. The optimal control based on the THIKE
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Figure 10. Controlled velocity �eld behind the step of the channel ((x; y)∈ (L=4; 3)× (0; L)).
(a) Controlled velocity �eld when control is on Slot 1. (b) Controlled velocity �eld when
control is on Slot 2. (c) Controlled velocity �eld when control is on Slot 3. (d) Controlled

velocity �eld when control is on Slot 4.

formulation performs well in reducing the recirculation region, but it is not as good as the
one corresponds to enstrophy formulation. As expected, the optimal controls with other two
formulations were not e�ective.

6. CONCLUSION

The optimal control techniques for non-linear unsteady �ow control problems are complex
and computationally demanding. The SQP method provides a fast and e�cient way to solve
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Figure 11. Performance of optimal controls when placed on Slot 2 for four di�erent
cost functionals. Shown are u-velocity at several stations in the channel. The baseline

u-velocity is shown for comparison.

non-linear optimal control problems. It iteratively solves a sequence of linear quadratic opti-
mal control problems converging to the optimal solution. The solution to the linear quadratic
problem is characterized by the Karush–Kuhn–Tucker (KKT) optimality system which in the
present context is a formidable system to solve. As a remedy various time domain decompo-
sitions, inexact SQP implementations and block iterative methods to solve the KKT systems
were examined. The numerical experiments reported demonstrates that inexact SQP imple-
mentations substantially accelerates the convergence. Our study con�rms that SQP method is
indeed a robust algorithm for solving unsteady �ow control problems.
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